Nonconforming Wilson Element for a Class of Nonlinear Parabolic Problems
نویسندگان
چکیده
This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx error on the gradient is of order h log( 1 ¡h).
منابع مشابه
Convergence of the Nonconforming Wilson Element for a Class of Nonlinear Parabolic Problems
This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx er...
متن کاملA class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes
A class of Crouzeix-Raviart type nonconforming finite element methods are proposed for the parabolic variational inequality problem with moving grid on anisotropic meshes. By using some novel approaches and techniques, the same optimal error estimates are obtained as the traditional ones. It is shown that the classical regularity condition or quasi-uniform assumption on meshes is not necessary ...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملSuperconvergence Analysis and Error Expansion for the Wilson Nonconforming Nite Element
In this paper the Wilson nonconforming nite element is considered for solving a class of two-dimensional second-order elliptic boundary value problems. Superconvergence estimates and error expansions are obtained for both uniform and non-uniform rectangular meshes. A new lower bound of the error shows that the usual error estimates are optimal. Finally a discussion on the error behaviour in neg...
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کامل